5-1 Polynomials Functions

By: Student 1

Classifying Polynomials

Vocab

Vocabulary Builder

polynomial (noun) pahl ah NOH mee ul

Related Words: monomial, binomial, trinomial

Definition: A polynomial is a monomial or the sum of monomials.

Things to remember

- 1. **Degree** of a polynomial Is the highest exponent
- 2. The number of **turning points** are found by subtracting 1 from the highest exponent.
- 3. Put polynomials in **Standard Form** also from highest to lowest exponents

Practice

Terms are the parts of a polynomial that are added or subtracted.

Write the number of terms in each polynomial.

4.
$$6 - 7x^2 + 3x$$

5.
$$4b^5 - 3b^4 + 7b^3 + 8b^2 - b$$
 6. $3qr^2 + q^3r^2 - q^2r + 7$

$$\mathbf{5.} \ \ 3qr^2 + q^3r^2 - q^2r +$$

Things Continued

Terms are the parts of a polynomial that are added or subtracted.

Write the number of terms in each polynomial.

4.
$$6 - 7x^2 + 3x$$

Trinomial

5.
$$4b^5 - 3b^4 + 7b^3 + 8b^2 - b$$
 6. $3qr^2 + q^3r^2 - q^2r + 7$

Quintic

$$\mathbf{5.} \ \ 3qr^2 + q^3r^2 - q^2r + 7$$

Quartic

Classifying Polynomials Chart

Degree	Name Using Degree	Polynomial Example	Number of Terms	Name Using Number of Terms
0	constant	5	1	monomial
1	linear	x + 4	2	binomial
2	quadratic	4x ²	1	monomial
3	cubic	$4x^3-2x^2+x$	3	trinomial
4	quartic	$2x^4 + 5x^2$	2	binomial
5	quintic	$-x^5 + 4x^2 + 2x + 1$	4	polynomial of 4 term

VIDEO

Degree	Degree	Example	Te
0	Constant	5	
1	Linear	x'+4	ó
2	Quadratic	x ²	
3		$4x^3 \qquad 2x^2 + x$	1
4		+ 5x ²	
5		$-x^5$ $x^2 + 2x + 1$	
Proble Write each	polynomi	ynomials form. What is the	

Practice

Lesson Check

Do you know HOW?

Classify each polynomial by degree and by number of terms.

1. $5x^3$

2.
$$6x^2 + 4x - 2$$

End Behavior of Graphs

End Behavior: Up and Up

End Behavior: Down and Down

End Behavior: Down and Up

End Behavior: Up and Down

Things to remember

End Behavior of a Polynomial Function of Degree n with Leading Term axn

	n Even ($n \neq 0$)	n Odd
a Positive	Up and Up	Down and Up
a Negative	Down and Down	Up and Down

Video for End Behavior

Practice

Determine the end behavior of the graph of each polynomial function.

6.
$$y = 5x^3 - 2x^2 + 1$$

7.
$$y = 5 - x + 4x^2$$

8.
$$y = x - x^2 + 10$$

Determining Degree Using Differences

Degree of a Polynomial

REMEMBER: Degree is the highest exponent of a polynomial.

$$y = -4x^{(3)} + 2x^2 + 7$$

This is a third degree (cubic) polynomial.

Degree of a Polynomial

You can tell degree of a polynomial without seeing the polynomial in standard form.

"What is the degree of the polynomial that generates the given

data?"

х	y
-3	-1
-2	-7
-1	-3
0	5
1	11
2	9
3	-7
8	

Degree of a Polynomial

х	V
-3	-1
-2	-7
-1	-3
0	5
1	11
2	9
3	-7
86	1 9

- 1. Use subtraction to find the difference between the y values
- 2. Repeat until the difference is constant (the same)
- 3. The number of time you have to repeat is the degree

Degree

The degree of the polynomial function is 3.

Practice Problems

Determine the degree of the polynomial function with the given data.

See Problem

88.	X	-2	-1	0	1	2	
	у	16	7	2	1	4	

39.

	-2					
У	-15	-9	-9	-9	-3	