Factoring Polynomials

A step-by-step guide created by Makiyah Cormick

Goal

Teach students how to correctly factor a polynomial

After reviewing this presentation students will be able to factor with ease!

Factoring

Factor out the GCF

- Find greatest value that each term can be divided by.

Step 2

Factor what's left

- Factor what you have left after finding your GCF.
- Remember to find the factors of your C term that also add up to be your B term.

Step 3

Check your answer

- Multiply your factors to see if you get the original polynomial
- If it's not the same as the original you did something wrong. Try again, don't give up.

Example 1

What is the factored form of $x^{3}-2 x^{2}-15 x$?

$$
\begin{aligned}
x^{3}-2 x^{2}-15 x & =x\left(x^{2}-2 x-15\right) \\
& =x(x-5)(x+3)
\end{aligned}
$$

Check $\quad x(x-5)(x+3)=x\left(x^{2}-2 x-15\right)$

$$
=x^{3}-2 x^{2}-15 x \quad \boldsymbol{\text { Distributive Propertv }}
$$

Example 2

$$
\begin{aligned}
f(x) & =x^{4}-2 x^{3}-8 x^{2} \\
& =x^{2}\left(x^{2}-2 x-8\right) \quad \text { Factor out the GCF, } x^{2} . \\
& =x^{2}(x+2)(x-4) \quad \text { Factor }\left(x^{2}-2 x-8\right) .
\end{aligned}
$$

Repeat the same steps from the last example to factor this polynomial!

Extra Help (video)

Your Turn!

Practice Problems

Factor the following...

$$
\begin{aligned}
& \text { 7. } x^{3}+7 x^{2}+10 x \\
& \text { 8. } x^{3}-7 x^{2}-18 x \\
& \text { 9. } x^{3}-4 x^{2}-21 x
\end{aligned}
$$

Goal

Teach students how find zeros of a polynomial when given its factors.

After reviewing this presentation students will be able to find zeros of a polynomial in factored form.

Factoring

Use Zero-Product Property

- Set each factor equal to 0 .

Step 2

Solve the equation for X

- Do the opposite operation to get x by itself.

Step 3

Graph

- Each zero is where the graph crosses the x axis

Example

Problem 2 Finding Zeros of a Polynomial Function

What are the zeros of $y=(x+2)(x-1)(x-3)$? Graph the function.

Step 1 Use the Zero-Product Property to find the zeros.

$$
(x+2)(x-1)(x-3)=0
$$

$$
\text { so } x+2=0 \text { or } x-1=0 \text { or } x-3=0 \text {. }
$$

The zeros of the function are $-2,1$, and 3 .

$$
x(x-8)=0
$$

Your Turn!

Practice Problems.

Lesson Check

Do you know HOW?

Find the zeros of each function.

1. $y=x(x-6)$
2. $y=(x+4)(x-5)$
3. $y=(x+12)(x-9)(x-7)$

Goal

Teach students how to write a polynomial function from its zeros.

After reviewing this presentation students will be able to write a polynomial function when given its zeros.

Factoring

Write a linear factor from each zero

- Subtract each zero from x
- $(x-\ldots)(x-\ldots$.

Multiply

- Use FOIL or the box method to multiply the factor together

Step 3

Simplify the
polynomial

- Combine Like Terms

Example Problem

Problem 3 Writing a Polynomial Function From Its Zeros

A What is a cubic polynomial function in standard form with zeros $-2,2$, and 3 ?

$$
\begin{array}{rlrl}
-2 & 2 & 3 & \\
\downarrow & \downarrow & \downarrow & \\
f(x) & =(x+2)(x-2)(x-3) & & \\
& =(x+2)\left(x^{2}-5 x+6\right) & & \text { Write a linear factor for each zero. } \\
& =x\left(x^{2}-5 x+6\right)+2\left(x^{2}-5 x+6\right) & & \text { Distributive Property } \\
& =x^{3}-5 x^{2}+6 x+2 x^{2}-10 x+12 & & \text { Distributive Property } \\
& =x^{3}-3 x^{2}-4 x+12 & & \text { Simplify. }
\end{array}
$$

The cubic polynomial $f(x)=x^{3}-3 x^{2}-4 x+12$ has zeros $-2,2$, and 3 .

Video

Write a polynomial function from its zeros
Suppose the zeros of a polynomial are -4, 1, and 2

$$
\begin{aligned}
& y=? \\
& y=(x+4)(x-1)(x-2)
\end{aligned}
$$

Your Turn!

Write a polynomial function in standard form with the given zeros.

$$
\begin{aligned}
& \text { 19. } x=5,6,7 \\
& \text { 23. } x=1,-1,-2
\end{aligned}
$$

THE END!

